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Newborn interest in studying modal logics over algebraic structures has emerged in recent
years, with notable work on groups by [2] and on lattices by [4]. In this abstract, we contribute
to this line of research by taking our class of frames to be (join-)semilattices and equipping our
language with a binary modality ‘⟨sup⟩’ for the join-operation. This yields a so-called modal
information logic, proposed in [1] as a general logical base theory of information.

[3] proves that the modal information logics over preorders and posets coincide, are decidable
and finitely axiomatizable. While it is straightforward to see that going one step further to
semilattices makes for a different logic, developing a full axiomatization has proven challenging.
In this talk, we present a solution to this problem by axiomatizing the logic through an infinite
scheme. The proof is technical and lengthy, but we believe that it offers valuable additions to
the toolbox of techniques for (modal) completeness proofs. Accordingly, our emphasis will be
on accenting key ideas through an informal presentation.

Defining the logic
We continue by setting out our targeted logic.

Definition 1 (Language). The language LM is defined using a countable set of proposition
letters Prop and a binary modality ‘⟨sup⟩’. The formulas φ ∈ LM are then given by the
following BNF-grammar:

φ ::= ⊥ | p | ¬φ | φ ∨ φ | ⟨sup⟩φφ,

where p ∈ Prop and ⊥ is the falsum constant. ⊣

Definition 2 (Frames and models). A (Kripke) semilattice frame is a pair F = (S,≤), where
S is a set and ≤ is a join-semilattice on S (i.e., reflexive, transitive and with all binary joins).

A (Kripke) semilattice model is a triple M = (S,≤, V ), where (S,≤) is a semilattice frame,
and V : Prop → P(S) is a valuation on S. ⊣

Definition 3 (Semantics). For any semilattice model M = (S,≤, V ) and state s ∈ S, satisfac-
tion of a formula φ ∈ LM at s in M (written M, s ⊩ φ) is defined as follows:

M, s ⊮ ⊥,
M, s ⊩ p iff s ∈ V (p),

M, s ⊩ ¬φ iff M, s ⊮ φ,

M, s ⊩ φ ∨ ψ iff M, s ⊩ φ or M, s ⊩ ψ,

M, s ⊩ ⟨sup⟩φψ iff there exist t, t′ ∈W such that M, t ⊩ φ, M, t′ ⊩ ψ, and s = sup{t, t′}.

Validity of a formula φ ∈ LM in a frame F (written F ⊩ φ) is defined as usual. ⊣
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Definition 4 (Logic). The modal (information) logic over semilattices is denoted MILSem and
defined as

MILSem := {φ ∈ LM | (S,≤) ⊩ φ, for all semilattice frames (S,≤)}. ⊣

Remark 5. As mentioned, it is easily seen that our logic differs from the corresponding logic
over preorders or posets. In particular, the associativity formula

(As.) ⟨sup⟩(⟨sup⟩pq)r ↔ ⟨sup⟩p(⟨sup⟩qr),

witnesses this by being valid on semilattices but not on posets. ⊣

Axiomatizing the logic: conceptual solution
Having introduced the logic, we proceed to present our solution to the axiomatization problem.
Due to the complexity of the definitions involved, we refer the reader to Chapter 6 of [3] for
details, and instead focus on conveying key ideas and heuristics.

Our approach is that of working out what axioms are needed to construct a semilattice
model satisfying some maximal consistent set (MCS) Γ0 ⊇ X0 extending an arbitrary consistent
set X0.1 Starting off, we define the single-state semilattice ({{∗}}, {({∗}, {∗})}) and ‘label’ it
with our maximal consistent set of concern: l({∗}) = Γ0. Constructing our model stepwise, the
objective is then to prove a ‘truth lemma’. If, say, {⟨sup⟩φ0φ

′
0, ⟨sup⟩φ1φ

′
1} ⊆ Γ0, we would want

to add corresponding points—for convenience called {φ0}, {φ′
0}, {φ1}, {φ′

1}—as in the left part
of the figure below, and label them according to the existence lemma so that φ0 ∈ l({φ0}), etc.

The first complication then becomes that although, e.g., {∗} = sup{{φ′
0}, {φ′

1}}, we need
not have CSemΓ0l({φ′

0})l({φ′
1}), where ‘CSem’ refers to the ternary relation of the canonical

frame of the sought axiomatization. Therefore, we would want a formula π1 ∈ MILSem somehow
enabling us to add a point, {φ′

0,φ
′
1}, and label it s.t. not only CSeml({φ′

0,φ
′
1})l({φ′

0})l({φ′
1})

but also CSemΓ0l(φ0)l({φ′
0,φ

′
1}) and CSemΓ0l(φ1)l({φ′

0,φ
′
1}). Taking this argument a step

further, we would want π1 to enable freely generating a semilattice modulo the requirements
{∗} = sup{φ0,φ

′
0} and {∗} = sup{φ1,φ

′
1} (i.e., the RHS semilattice of the figure below) so

that whenever x = sup{y, z}, it is also the case that CSeml(x)l(y)l(z).

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

⇝

{∗}

{φ0} {φ′
0} {φ′

1} {φ1}

Now, it is obviously false that whenever some w ⊩ ⟨sup⟩φ0φ
′
0 ∧ ⟨sup⟩φ1φ

′
1 in some semi-

lattice model, the sub-semilattice generated by w and witnesses for {⟨sup⟩φ0φ
′
0, ⟨sup⟩φ1φ

′
1} is

1I assume familiarity with such axiomatization practice, but, even so, I am aware that what follows may still
require significant effort to fully understand. Nonetheless, I believe that my talk will provide further clarity.
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guidance. It is not intended to be ‘literally true’ but ‘metaphorically helpful’—hopefully not least for applying
similar ideas and drawing inspiration in other axiomatization settings.



isomorphic to the RHS semilattice. But it is true that this sub-semilattice will be the (semilat-
tice) homorphic image of the RHS semilattice. Moreover, this can adequately be encoded into
the formula π1 and will suffice for dealing with this first complication. This helps explain the
following parts of the axiomatization:

• The axioms, like π1, will be implications that can be intuited as follows: given the satis-
faction of some formulas (the antecedent), a certain sub-semilattice is the homomorphic
image of a certain other semilattice which is freely generated modulo some specified re-
quirements (the consequent).

• To define formulas like π1, we must, first, define this “certain other semilattice” which
is “freely generated modulo specified requirements”. This is formalized by taking freely
generated semilattices P(S)\{∅} and quotienting out under the least congruence relation
∼ meeting the given requirements.

Continuing the stepwise construction, suppose, say, ⟨sup⟩ψψ′ ∈ l({φ0}). Again, simply
adding corresponding worlds {ψ}, {ψ′} labeled using the existence lemma for l({φ0}) does
not do the job. Because then, for instance, {∗} = sup{{ψ′}, {φ′

0}} while we need not
have CSeml({∗})l({ψ′})l({φ′

0}). Once more, the solution must be to have some formula
π2 ∈ MILSem enabling us to construct an extended semilattice freely generated modulo the
obvious requirements so that, crucially, x = sup{y, z} implies CSeml(x)l(y)l(z). This brings
about a second (minor) complication: since ⟨sup⟩ψψ′ ∈ l({φ0}), it is instinctive to want to find
a formula π2 ∈ MILSem ascertaining this when ‘evaluated at’ l({φ0}); however, LM -formulas
can, clearly, only express properties of worlds below any given world of evaluation. Thus, there
can be no formula π2 expressing the desired when evaluated at l({φ0}). Fortunately, a solu-
tion can be found: l({∗}) = Γ0 is all-seeing (backwardly), so we should (and will) be able to
express the desired with a formula π2 evaluated at l({∗}) = Γ0. Before going any further, let
us summarize the key take-aways.

• To achieve the truth lemma, we will need to unboundedly extend the semilattice under
construction. This explains one way in which our axiomatization is infinite: having, e.g.,
defined the RHS semilattice

(
P(S1)\{∅},∪

)
/∼1

using the formula π1, if, e.g., ⟨sup⟩ψψ′ ∈
l({φ0}), we will need to construct an extended semilattice

(
P(S2) \ {∅},∪

)
/∼2 using a

formula π2. And then an extended one using a formula π3, etc. That is, we must be
able to ascertain that an ever-increasing sub-semilattice is the homormorphic image of a
correspondingly ever-increasing semilattice freely generated modulo ever-more specified
requirements.

• In a sense, the item above explains a way in which we must include axioms for each
‘depth’ n ∈ ω. On top of that, we must also include axioms for each ‘width’ n ∈ ω:
the semilattice freely generated modulo requirements of {∗} = sup{φ0,φ

′
0} and {∗} =

sup{φ1,φ
′
1} is obviously smaller than the one generated modulo requirements of {∗} =

sup{{φ0}, {φ′
0}}, {∗} = sup{{φ1}, {φ′

1}} and {∗} = sup{{φ2}, {φ′
2}}, etc.

• When constructing the model to ensure that x = sup{y, z} always implies CSeml(x)l(y)l(z),
we have to label all points with MCSs obtained by evaluating the formulas π1, π2, . . . at
the top MCS l({∗}) = Γ0.

Continuing, although solving one problem, this last solution of evaluating at l({∗}) inevitably
constructs another (major) problem: having first labeled, e.g., {φ0} via evaluating the formula
π1 at Γ0, we now relabel {φ0} via evaluating another formula π2 at Γ0. How then are we to



ascertain that π2 and π1 agree on the labeling; i.e., that, e.g., l2({φ0}) = l1({φ0})? If we
by using formulas somehow could ‘name’ the MCSs of the labeling induced by π1, we could
construct π2 using these ‘names’ as to ensure that the labeling of {φ0} induced by π2 agrees
with the labeling of π1; thus, solving the problem. Evidently, (without nominals) there can be
no way of doing so when dealing with MCSs. There is an alternative, though: while an MCS Θ
is equivalently defined as an infinite conjunction Θ̂, a finite set of formulas ΘF is equivalently
defined as a finite conjunction Θ̂F ; i.e., in some sense, going finite facilitates ‘naming’. This
suggests the following idea:

• Instead of starting out with some (possibly infinite) consistent set X0, we go for weak com-
pleteness and start with a consistent formula φ which we extend to the least subformula-
closed set Φ containing {φ}. We then label our worlds according to which Φ-formulas
they satisfy instead of with MCSs. In this way, using finite conjunctions, we can contain
the labeling in the formula π1, and then also in the extended formula π2, etc. We then get
that (1) x = sup{y, z} implies CSemΓxΓyΓz for some MCSs Γi ⊇ l(i), and, importantly,
(2) l1(x) = l2(x).

Yet again, solving one problem we have caused another: how can π1 also contain the information
determining what Φ-formulas the worlds are to satisfy and still be valid: that, say, some
w ⊩ ⟨sup⟩φ0φ

′
0 does not determine what Φ-formulas the witnessing φ0- and φ′

0-worlds satisfy.
Key here is that Φ is finite, so there are only finitely many ‘names’ over Φ, and we do know that
the witnessing φ0- and φ′

0-worlds must have some ‘Φ-name’. Therefore, the consequent of π1
will not state that one particular sub-semilattice is the homomorphic image of one particular
other semilattice, but instead disjunctively quantify over all such options induced by all possible
Φ-names. This brings us to our final point of elaboration:

• If the consequents of the formulas π1, π2, . . . consist of disjunctions defining distinct semi-
lattices, which disjunct shall we choose when stepwise extending our semilattice as to
satisfy the truth lemma? To answer this, it is helpful recalling how π2 is to ‘extend’ π1.
Essentially, we want π2 to encode how a bigger sub-semilattice must also be the homo-
morphic image of another bigger semilattice. So since each disjunct of the consequent of
π1 encodes how a sub-semilattice is the homomorphic image of another semilattice, π2
must encode the extended claim for each disjunct. To do so, π2 must, in particular, split
each disjunct of π1 into further disjunctions to quantify over all possible Φ-names for the
‘new worlds’ of the extended semilattices. And so forth as for π3, . . ..

What we are left with is a tree where each node at each layer i, in particular, defines
a semilattice (the one that a given sub-semilattice must be the homomorphic image of)
and also a corresponding disjunct of a formula πi, and the edges mark ‘extension’ of
both semilattices and formulas. The main observations are then (1) the tree is finitely
branching, and (2) we can assure that at each layer at least one disjunct must be ‘satisfied’,
allowing for an infinite subtree where König’s Lemma applies to supply an infinite chain
of semilattice models of which its colimit is our satisfying semilattice model.

This concludes our ‘study guide’ for the axiomatization we are to present. While it is in no way
exhaustive and should be treated as nothing but an informal heuristical guide, we hope that by
having highlighted particular features, we have called to the fore ideas potentially applicable in
other axiomatization settings.
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